
Pertanika J. Sci. & Technol. 32 (5): 2281 - 2298 (2024)

Journal homepage: http://www.pertanika.upm.edu.my/

© Universiti Putra Malaysia Press

SCIENCE & TECHNOLOGY

ISSN: 0128-7680
e-ISSN: 2231-8526

Article history:
Received: 23 October 2023
Accepted: 01 February 2024
Published: 26 August 2024

ARTICLE INFO

DOI: https://doi.org/10.47836/pjst.32.5.19

E-mail addresses:
saheed2066@graduate.utm.my (Lukuman Saheed Ajibade)
knizam@utm.my (Kamalrulnizam Abu Bakar)
ymnura@atbu.edu.ng (Muhammed Nura Yusuf)
babangida.isyaku@slu.edu.ng (Babangida Isyaku)
* Corresponding author

A Reliable Multimetric Straggling Task Detection

Lukuman Saheed Ajibade1,2*, Kamalrulnizam Abu Bakar1, Muhammed Nura Yusuf1,3
and Babangida Isyaku1,4

1Faculty of Computing, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
2Department of Computer Science, Federal Polytechnic Offa, Nigeria
3Department of Mathematical Sciences, Abubakar Tafawa Balewa University, Bauchi, Nigeria
4Department of Mathematics and Computer Science, Sule Lamido University, K/Hausa, Nigeria

ABSTRACT

One of the most difficult issues in using MapReduce for parallelising and distributing large-
scale data processing is detecting straggling tasks. It is defined as recognising processes that
are operating on weak nodes. When two steps in the Map phase (copy, combine) and three
stages in the Reduce phase (shuffle, sort, and reduce) are included, the overall execution
time is the sum of the execution times of these five stages. The main objective of this study
is to calculate the remaining time to complete a task, the time taken, and the straggler(s)
detected in parallel execution. The suggested method is based on the use of Progress Score
(PS), Progress Rate (PR), and Remaining Time (RT) metrics to detect straggling tasks.
The results obtained have been compared with popular algorithms in this domain, such as
Longest Approximate Time to End (LATE) and Combinatory Late-Machine (CLM), and
it has been demonstrated to be capable of detecting straggling tasks, accurately estimating
execution time, and supporting task acceleration. RMSTD outperforms LATE by 23.30%
and CLM by 19.51%.

Keywords: Big data, MapReduce, progress score, straggling tasks, stragglers

INTRODUCTION

This paper presents a Reliable Multimetric
Straggling Task Detection algorithm
(RMSTD) strategy for detecting straggling
tasks among tasks executing in parallel. The
main aim of the RMSTD is to present an
approach that uses multiple metrics to make
straggler detection much more reliable and

2282 Pertanika J. Sci. & Technol. 32 (5): 2281 - 2298 (2024)

Lukuman Saheed Ajibade, Kamalrulnizam Abu Bakar, Muhammed Nura Yusuf and Babangida Isyaku

accurate. Straggler detection in the Hadoop MapReduce framework refers to identifying
tasks that take longer than expected and are known as “stragglers” (Ouyang et al., 2016).
In straggler detection, the overall execution time is the sum of the execution times of these
five steps, consisting of two phases in the Map phase (copy, combine) and three stages in
the Reduce phase (copy shuffle/sort, and reduce) (Katrawi et al., 2021).

Hadoop MapReduce and Apache Spark represent two widely adopted technologies
for processing large datasets in the industry. Although both frameworks excel at managing
substantial volumes of data, they diverge in terms of their architectural designs (Ketu et
al., 2020). Hadoop MapReduce employs a cost-effective approach, utilising the Hadoop
Distributed File System (HDFS) to execute batch processing. It is recognised for its stability
and maturity, having been in use for an extended period and earned the trust of numerous
organisations for handling extensive data volumes. The framework boasts a straightforward
programming model, enhancing its usability. In contrast, Apache Spark offers a different
approach and architecture for large-scale data processing.

Common methods of straggler detection include resource usage monitoring, where
usage of system resources such as CPU, memory and disk utilisation is monitored as
tasks execute, such that tasks that use fewer resources during their execution relative to
other tasks may be declared as stragglers (Javadpour et al., 2020). Also, the Ensemble
method integrates various straggler detection techniques to improve detection accuracy
(Kumar et al., 2021). Profile-based analysis entails profiling tasks and finding outliers
based on runtime, resource utilisation, or other factors. Another approach is the use
of machine learning techniques where factors such as task running time, resource
utilisation, input data records and cluster conditions are used to detect straggling tasks;
this approach identifies trends in historical data in forecasting likely straggling tasks
(Ouyang et al., 2018).

However, in resource usage monitoring, a task’s resource utilisation may be unreliable
as an indicator of a straggler because it could legally use fewer resources if it has minimal
data requirements or is executing on a node with limited resources. On the other hand,
the ensemble approach, profile-based strategy, and machine learning techniques have the
disadvantages of complexity, high profiling, and computational overheads. In most of the
previous works on straggler detection, the use of a single metric to detect straggling tasks
is quite common because the MapReduce framework is designed for a homogeneous
environment where the computational power of the various machines is the same; hence,
there is little consideration for the CPU capability since all the tasks are expected to run at
the same rate. This assumption is not very true in all circumstances because, in a typical data
centre, the resources are not dedicated exclusively to a particular job; hence, the resources
are shared. Therefore, the load on each node varies, which may, in turn, affect the rate of
execution of the tasks spread across the nodes. Therefore, this paper proposes a Reliable

2283Pertanika J. Sci. & Technol. 32 (5): 2281 - 2298 (2024)

A Reliable Multimetric Straggling Task Detection

Multimetric Straggler Detection Algorithm (RMSTD) to address the inadequacy of the
previous studies and improve the effectiveness of straggler detection. The contribution of
this paper includes:

• Improvement of the reliability of the straggling tasks detection by using Average
Remaining Time (ART) to complete execution of the tasks to ensure that scenarios
like the late start of execution of the task(s) due to the load on the node(s) and data
skew problem rather than the usage of a single metric.

• The task’s historical behaviour mitigates the impact of short-term oscillations
or outliers in the Remaining Time, resulting in a more reliable estimate of job
completion.

• RMSTD offers a more trustworthy approach by considering the past average, giving
a more informed perspective on the anticipated completion timeframes of tasks.

RELATED WORKS

Phan et al. (2019) proposed a Framework for Assessing the Stragglers Detection (FASD)
mechanism over MapReduce for straggler detection because other studies tend to focus
more on the impact of stragglers. FASD presented a comprehensive straggler detection
and reduction approach. However, the evaluation only applies to one application, and
the study does not consider how it will be used in practice or include empirical data. The
study also did not consider using optimal metrics in straggler detection, even though
it offers a method for assessing straggler detection algorithms. Ghare and Leutenegger
(2005) suggest task replication to enhance job response time. MapReduce. Dean and
Ghemawat (2008) employ speculative execution to finish straggler jobs when parallel
processing is nearing completion. Mantri reduces stragglers from MapReduce cluster
processing nodes (Ananthanarayanan et al., 2019). Mantri’s core strategies are straggler
task restarting, network-aware task placement, and task output protection. Chen et al.
(2014) introduce the speculative execution method of Maximum Cost Performance
(MCP). Zaharia et al. (2019)’s Longest Approximate Time to End (LATE) improves
Hadoop task scheduling.

In the LATE technique, the remaining running task time for each phase has been
assumed to be the same; however, in the Reduce phase, the shuffle stage takes longer to
complete than other stages as they are based on the prior task. According to Javadpour
et al. (2020), Self-Adaptive MapReduce Scheduling Algorithm (SAMR), Enhanced
Self-Adaptive MapReduce Scheduling Algorithm (ESAMR), and Speculative Execution
Algorithm Based on Decision Tree (SECDT) algorithms are unable to accurately anticipate
the running duration. It is insufficient because the present task differs in several ways from
the prior ones. While it is crucial to consider this because the node processing durations vary
depending on their characteristics, ESAMR only uses executable information and ignores

2284 Pertanika J. Sci. & Technol. 32 (5): 2281 - 2298 (2024)

Lukuman Saheed Ajibade, Kamalrulnizam Abu Bakar, Muhammed Nura Yusuf and Babangida Isyaku

node specifications (CPU and memory). A better job assignment scheme for Hadoop, the
Earliest Completion Time (ECT) scheme, was presented by Dai and Bassiouni (2013). Two
improved replica placement policies for Hadoop, the Partition Replica Placement Policy
and the Slot Replica Placement Policy, were proposed by Qiang et al. (2014) and Dai et al.
(2016). In contrast to the widely used Standard Deviation (SD) method, Tukey’s method
(Dai et al., 2017) adopts a statistical technique for identifying outliers that seems more
suitable for identifying stragglers and starting speculative execution early. The sensitivity
to extreme observations and the time it takes to find stragglers limit this strategy, too. As a
result, most existing works declare non-straggling tasks as straggling tasks while ignoring
true straggling tasks since they do not apply ideal parameters to recognise straggling tasks
among parallel running tasks.

In summary, most existing studies on straggling task detection are not based on
optimum metrics and are usually focused on a specific situation; hence, their usage in
other situations usually leads to failure. For example, if a system is designed to work in
a homogeneous environment, it cannot be used in a heterogeneous environment because
issues like skews are not considered.

PROPOSED SOLUTION

This paper presents a Reliable Multimetric Straggling Task Detection algorithm (RMSTD)
strategy for detecting straggling tasks among tasks; the RMSTD algorithm is designed to
improve the straggler detection strategy irrespective of the environments (homogeneous
or heterogeneous). This approach uses optimal parameters to detect straggling tasks
applicable in all environments, including skew situations. The primary objective of
this problem is to estimate the correct execution time in each stage of the MapReduce
framework, which results in the correct total execution time. The constraints associated
with this problem are the two stages in the Map phase (copy, combine) and three stages
of Reduce (shuffle, sort, and reduce). The total execution time is the total sum of the
execution time of these five stages.

The proposed method for solving this problem is calculating the Average Remaining
Time (ART) to complete the execution of the tasks running in parallel. All tasks whose
remaining time to complete execution is greater than the calculated ART is/are declared
as stragglers. The computational complexity of the RMSTD algorithm is O(n), where n is
the number of tasks in the Task_List. The algorithm iterates through each task in the list
once and performs constant work for each task. Therefore, the algorithm’s time complexity
is linear with respect to the input size. The design and operational process of RMSTD is
structured into two phases: (1) the initial task allocation phase and (2) progress monitoring
and the straggler detection phase. Figure 1 presents the design flowchart, and Algorithm
1 shows the steps to achieve the desired result.

2285Pertanika J. Sci. & Technol. 32 (5): 2281 - 2298 (2024)

A Reliable Multimetric Straggling Task Detection

Figure 1. Flowchart of RMSTD design

Start

Initialisation
create Task-list

create Straggler-list
initialise RTSum = 0

of tasks

Select task

Calculate progress
score PS = data_read/

data_size

PS = % of
processing*0.33

PS = 0.33 + % of
processing*0.33

PS = 0.66 + % of
processing*0.33

Calculate average of
RT RTAvrg = SumRT/

Num-Task

For each task in
Task-list

Add task to
Straggler-list

Print
Straggler-list

Calculate progress rate PR
= (1-PS)/Time(s)

Select next task

Calculate remaining time
RT = (1-PS)/PR

Update Task-list
RTSum = RTSum + RT

Task-list
exhausted?

Task-list
exhausted?Select next task

Execution in
reduce phase?

Execution in sort
phase?

Execution in copy
phase?

Execution in
map phase?

If Task-RT >
RTAvrg

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

Start

2286 Pertanika J. Sci. & Technol. 32 (5): 2281 - 2298 (2024)

Lukuman Saheed Ajibade, Kamalrulnizam Abu Bakar, Muhammed Nura Yusuf and Babangida Isyaku

Algorithm 1: RMSTD Algorithm
1. # Create a list of all tasks, "Task_list" with task_id, PS, PR, and RT

attributes
2. # Create a list of all Straggling_tasks, "Straggler_list"

3. Initialise RTSum = 0, Num-Task = total no of tasks
4. For each task in Task_list
5. If execution = map_phase
6. PS =data read/data size
7. Else
8. If execution = copy_phase
9. PS = %processing*0.33
10. elseif execution = sort_phase
11. PS = 0.33+ %processing*0.33
12. elseif execution = reduce_phase
13. PS = 0.66+ %processing*0.33
14. endif
15. Endif

16. # Calculate the progress rate (PR)
17. PR = PS/Time(s)

18. calculate the remaining time to finish the task (RT)
19. RT = (1-PS)/PR
20. Update Task_list with PS, PR, and RT
21. RTSum = RTSum+RT
22. Endfor

23. RTavrg = SumRT/Num-Task

24. For each task in task_list:
25. If TaskRT > RTavrg
26. Add task to Straggler_list
27. Endif
28. Endfor

Data Generation for RMSTD

For testing the design using ART, a Java code (Algorithm 2) was used to generate test data
for simplicity since all kinds of data can be handled by the design. Different data types to
be processed will have a program to process the data exclusively.

2287Pertanika J. Sci. & Technol. 32 (5): 2281 - 2298 (2024)

A Reliable Multimetric Straggling Task Detection

Algorithm 2: Text data generator
1. function NewTextFile(filePath, fileSizeInBytes):
2. open file at filePath for writing
3. create a random number generator
4. create a TextString object
5. bytesWritten = 0

6. while byteswritten < fileSizeInBytes
7. clear the TextString
8. lineLength = generate a random number between 1 and 10
9. randomLine = LineOfText(lineLength)
10. write randomLine to the file
11. write a new line character to the file
12. bytesWritten += length of randomLine + length of new line

character
13. if bytesWritten is a multiple of 10 MB
14. flush the writer to free up memory
15. endif
16. endwhile
17. close the file
18. return NewTextFile

19. function LineOfText(lineLength):
20. create a TextString object
21. for i = 0 to lineLength - 1
22. XterLetter = generate a random letter
23. append XterLetter to the TextString
24. endfor
25. return the TextString as a string

26. main:
27. fileSizeInBytes = desired file size in bytes
28. filePath = path to the output file

29. NewTextFile(filePath, fileSizeInBytes)

Initial Task Allocation

The task allocation procedure in the Map phase is an important part of the MapReduce
framework. It helps ensure that the MapReduce job is executed efficiently, and the results
are timely. In this design phase, the input data is read and uploaded into HDFS together with

2288 Pertanika J. Sci. & Technol. 32 (5): 2281 - 2298 (2024)

Lukuman Saheed Ajibade, Kamalrulnizam Abu Bakar, Muhammed Nura Yusuf and Babangida Isyaku

the job configuration. The allocation of input data to nodes is responsible for processing
the input data and generating intermediate key-value pairs in this architecture phase. The
Namenode begins the task allocation method by breaking the input data into chunks and
assigning each chunk to the Map task. The Map jobs are run in parallel on the available
nodes in the Hadoop cluster, and it also generates intermediate key-value pairs that are
saved in HDFS, as depicted in Figure 2. The following are the steps involved in allocating
tasks to selected nodes. The Namenode splits the input data into 64Mb/128MB/256Mb
record-size chunks. Each split is assigned to a Map job. The Job Tracker considers the
load on each node, the locality of the chunks’ data, and the available resources on each
one while allocating tasks to nodes. A task is often assigned to the nodes with the available
resources and close to the data to improve the MapReduce job performance (Algorithm 3).

Figure 2. Flowchart of initial task allocation

Start

No

Node has data
locality?

Read input data and
job configuration

Namenode splits input data
into 64 Mb/128 Mb block

sizes

Initialize nodes for
input splits

For each input split

Select node and
assign input split

Update list of nodes with
input splits

Input list
exhausted?

Select next
node

Select next
node

No Yes

Yes

End

2289Pertanika J. Sci. & Technol. 32 (5): 2281 - 2298 (2024)

A Reliable Multimetric Straggling Task Detection

Algorithm 3: Initial Task Allocation Algorithm
1. Input: MapReduce job configuration, input data
2. Output: Map task assignments
3. Split input data into input splits based on block size
4. Initialise an empty map of nodes to assigned tasks
5. For each input split:
6. Select the nodes with data locality for the input split
7. Assign the input split to a selected node with the least number of

assigned
 tasks

8. EndFor
9. Update the map of the node to assigned tasks
10. Return the map of the node to the assigned tasks

Progress Monitoring and Straggler Detection

The role of this phase in the operation of RMSTD is to use Progress Score, Progress Rate,
and Remaining Time to complete and detect straggling tasks among tasks executing in
parallel on the Hadoop cluster. In a Hadoop cluster, where tasks are executed in parallel,
it is crucial to monitor the progress of individual tasks to ensure the timely completion
of jobs. Straggling task(s) whose progress is/are slower than others can significantly
impact the job’s overall performance and completion time. To address this challenge,
progress monitoring techniques employing metrics such as Progress Score, Progress
Rate, and Remaining Time have emerged as valuable tools for detecting straggling tasks
in Hadoop clusters.

Progress Score Calculation

The Progress Score metric provides an overview of the progress made by a task relative
to the total amount of work it needs to complete. It is calculated by dividing the amount
of work completed by the total amount of work. It is a score between 0 and 1 (from the
literature), where 0 indicates that the task has not started, and 1 indicates that the task is
complete. A high progress score indicates that a task is nearing completion, while a low
score suggests that a task is lagging. Tracking each task’s Progress Score makes it possible
to identify tasks that have fallen behind in their progress. A lower Progress Score compared
to others suggests a potential straggler.

In a homogeneous environment, that is, where all the nodes are the same in terms of
processing capacity, the processing is expected to proceed at the same rate; hence, any
task/node with a problem can be easily detected by using PS calculated as Equation 1:

2290 Pertanika J. Sci. & Technol. 32 (5): 2281 - 2298 (2024)

Lukuman Saheed Ajibade, Kamalrulnizam Abu Bakar, Muhammed Nura Yusuf and Babangida Isyaku

𝑃𝑃𝑃𝑃[𝑖𝑖] = �

𝑀𝑀
𝑁𝑁

 𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡
1
3
�𝑡𝑡 +

𝑀𝑀
𝑁𝑁
� 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡

 (1) [1]

where, PS[i] is the ith task’s P, N is the number of key/value pairs that must be processed
in a task, M is the number of key/value pairs that have already been processed in a certain
task, and K is the completed phase of a reduction task.

The PS for a Map is the fraction of input data read, but the execution of a Reduce is
broken into three phases (copy, sort, and reduce), each accounting for one-third of the total
PS. This weighting can be changed by modifying the scheduling parameters. For example, a
task halfway through the copy phase will have a PS of 0.5*0.33 = 0.165. while a task halfway
through the reduce phase will have a PS of 0.33+0.33+(0.5*0.33) = 0.66+0.165 = 0.83

The value of the Progress score (PS) is taken for each task, and the task(s) whose PS <
threshold (determined by individual work) is/are then declared as straggler(s). A threshold
of 0.2 is commonly used for comparison as in (LATE) such that any task whose PS < 0.2
is identified as a straggler.

Progress Rate Calculation

The Progress Rate measures the speed at which a task is progressing. It is calculated by
dividing the amount of work completed by the time taken to complete that work. A high
progress rate indicates that a task is progressing quickly, while a low rate suggests that
a task is progressing slowly. Monitoring the PR allows the identification of tasks that
are progressing at a slower rate than expected, indicating a potential straggler calculated
as Equation 2:

 𝑃𝑃𝑃𝑃𝑖𝑖 =
𝑃𝑃𝑃𝑃[𝑖𝑖]
𝑇𝑇

 [2]

where, PRi is the Progress Rate of Taski, and T is the time the task has been executed.
A threshold is then determined for PR, at which point a task whose PR is less than the
threshold is declared a straggler, which means that its progress is very slow.

There are certain disadvantages to using Progress Score or Progress Rate alone to
identify straggling tasks in Hadoop.

• Inaccuracy of Detection: Progress Score and PR are not always accurate because
PS is based on how much data has been processed by a task and the amount of
time the task has been running, while PR is the rate of progress made by a task.
Both can be misleading when a task is simply waiting for input data from a slow
network connection or a slow input source. Such a task may have a low PS or PR
that can make it be declared as a straggler when it is not.

2291Pertanika J. Sci. & Technol. 32 (5): 2281 - 2298 (2024)

A Reliable Multimetric Straggling Task Detection

• The PS or PR status of a job can change if additional parameters like the data
collection size, the data locality, the number of concurrent tasks executing on the
same node, and network congestion or latency are not considered.

• Lack of context: Progress Score and Progress Rate do not provide context for a
task, such as the complexity of the data being processed or the degree of processing
difficulty. Some jobs could seem to have a low PS or PR due to the volume of data
they are handling, their inherent complexity, or their resource-intensive nature,
leading to their being declared as stragglers when they are not.

• Unpredictable progress: Some tasks in Hadoop, particularly those that involve
iterative algorithms or complex data dependencies, may exhibit non-linear
progress, which causes an inaccurate assessment of their progress and may result in
false positives or negatives when identifying straggling tasks using PS or PR alone.

• Data and Computational Skews: In Hadoop, data is frequently distributed unevenly
between tasks because of the data’s nature or the utilised partitioning method
(Data Skew). The processing capacities will differ since the nodes’ capacities in
a heterogeneous environment are different (Computational skew). These metrics
do not consider both skews, leading to some tasks taking longer than others to
complete. Hence, the progress of the tasks might not be shown correctly.

• Wrong Assumption: It is usually assumed that tasks progress at a constant rate,
which is not usually the case because the nodes are not dedicated to the job alone.
The nodes are processing other tasks. Hence, not all the nodes’ resources are
always available to the tasks.

Remaining Time (RT) to Complete Calculation

The RT metric estimates the time required for a task to be completed based on its current
PR. It is calculated by dividing the remaining work by the progress rate. A high remaining
time to complete suggests that such a task will take a long time to finish, indicating a
potential straggler. By comparing the estimated remaining time of each task, it is possible
to identify tasks with significantly longer estimated completion times compared to others.
Such tasks may be potential stragglers. RT of a task is calculated according to Equation 3.

 𝑃𝑃𝑇𝑇𝑖𝑖 =
1 − 𝑃𝑃𝑃𝑃[𝑖𝑖]
𝑃𝑃𝑃𝑃[𝑖𝑖]

 [3]

where RTi, PS[i] Remaining Time (RT), Progress Score (PS) and Progress Rate (PR) of Taski

Average Remaining Time (ART) to Complete Calculation

The performance and efficiency of a system rely largely on the timely completion of tasks
in distributed computing systems such as Hadoop, where large-scale data processing tasks

2292 Pertanika J. Sci. & Technol. 32 (5): 2281 - 2298 (2024)

Lukuman Saheed Ajibade, Kamalrulnizam Abu Bakar, Muhammed Nura Yusuf and Babangida Isyaku

are broken into smaller sub-tasks and completed across a cluster of nodes. However, certain
tasks, known as stragglers, may take substantially longer time to run to completion than
others. These straggling tasks can slow overall throughput and lengthen job completion times,
reducing system efficiency and user experience. To address this challenge in this study, the
use of Average Remaining Time (ART), a metric that estimates the time remaining for each
task to complete based on their Progress Score (PS), Progress Rate (PR) and Remaining Time
to Complete (RT), is employed. By continuously monitoring these metrics, the progress of
tasks, and comparing their ART values, it becomes possible to identify potential stragglers
among tasks being executed in parallel. The ART is calculated as Equation 4:

𝑃𝑃𝑇𝑇𝑚𝑚𝑎𝑎𝑎𝑎 =
∑ 1 − 𝑃𝑃𝑃𝑃[𝑖𝑖]

𝑃𝑃𝑃𝑃[𝑖𝑖]
𝑛𝑛

 [4]

Where, RTavg is the average of the remaining time of execution of all the tasks, PS is the
progress score, PR is the progress rate, n is the number of tasks executed in parallel. Any
Taski whose value is less than the calculated RTavg is then declared/identified as a straggler.

Table 1
Cluster configurations

Cluster Configurations

Node

M
ain

M
em

ory

C
PU

C

ores

Storage

myclustertask-m (master) 16G 4 50G
myclustertask-0 (slave-1) 12G 2 50G
myclustertask-1 (slave-2) 12G 2 50G
myclustertask-2 (slave-3) 12G 2 50G
myclustertask-3 (slave-4) 12G 2 50G
myclustertask-4 (slave-5) 12G 2 50G
myclustertask-5 (slave-6) 12G 2 50G
myclustertask-6 (slave-7) 12G 2 50G
myclustertask-1 (slave-2) 12G 2 50G
myclustertask-2 (slave-3) 12G 2 50G

Table 2
Software configurations

Software Configurations
Operating System Ubuntu 20.04
Hadoop 2.8.5
JDK 1.8

PERFORMANCE EVALUATION

Experimental Setup of the proposed
RMSTD

The experiment was set up and conducted on
a Google Cloud platform. Eight nodes were
used for this experiment. Tables 1 and 2 show
the Cluster and Software configurations.
Figure 3 shows the screenshot of the nodes
running on the Google Cloud platform. 10
GB, 20 GB and 30 GB data (text) were
generated using a Java program to test
the design. The result of 10 GB data size,
when executed using a single node (laptop)
with other hardware specifications, is
shown in Figure 4. For the 10 GB data on
the Google Cloud platform, the readings
were taken after 10 s of execution, and the
average remaining time was calculated. In
comparison, 20 GB and 30 GB data were
taken after 30 s and 50 s, respectively, as
shown in Figures 4, 5 and 6.

2293Pertanika J. Sci. & Technol. 32 (5): 2281 - 2298 (2024)

A Reliable Multimetric Straggling Task Detection

Figure 4. Result of the experiment (10 GB) on a single node (laptop)

Figure 3. Screenshot of the nodes running on Google Cloud Platform

Job Counters
 Killed reduce tasks=2
 Launched map tasks=1
 Launched reduce tasks=10
 Data-local map tasks=1
 Total time spent by all maps in occupied slots (ms)=216810
 Total time spent by all reduces in occupied slots (ms)=10717740
 Total time spent by all map tasks (ms)=4818
 Total time spent by all reduced tasks (ms)=119086
 Total vcore-milliseconds taken by all map tasks=4818
 Total vcore-milliseconds taken by all reduce tasks=119086
 Total megabyte-milliseconds taken by all map tasks=6937920
 Total megabyte-milliseconds taken by all reduce tasks=342967680
Map-Reduce Framework
 Map input records=8
 Map output records=25
 Map output bytes=256
 Map output materialised bytes=423
 Input split bytes=98
 Combine input records=0
 Combine output records=0
 Reduce input groups=22
	 Reduce	shuffle	bytes=423
 Reduce input records=25
 Reduce output records=25
 Spilled Records=50
	 Shuffled	Maps	=10
	 Failed	Shuffles=0
 Merged Map outputs=10
 GC time elapsed (ms)=3730
 CPU time spent (ms)=16880
 Physical memory (bytes) snapshot=4417970176
 Virtual memory (bytes) snapshot=48205594624
 Total committed heap usage (bytes)=4498391040

2294 Pertanika J. Sci. & Technol. 32 (5): 2281 - 2298 (2024)

Lukuman Saheed Ajibade, Kamalrulnizam Abu Bakar, Muhammed Nura Yusuf and Babangida Isyaku

RESULTS AND DISCUSSION

The experiment was set up and conducted on the Google Cloud platform and tested with
10 GB, 20 GB and 30 GB data; the ART was taken after 10 s, 30 s and 50 s, respectively,
because of the data sizes. The result showed consistency for the number of tasks whose
remaining time to complete was greater than the ART. At the 10 s threshold, two of the
tasks (myclustertask-1 and myclustertask-3) RT were above the threshold of ART; at 30 s
threshold, (myclustertask-1 and myclustertask-5) RT were above the threshold of ART and
at 50 s threshold, (myclustertask-1 and myclustertask-4) RT were above the threshold of
ART with consistency of number of straggling tasks detected. Table 3 shows the experiment
results; a graphical representation of the result comparison for different data sizes is shown
in Figures 5, 6, and 7. From the results when compared with Katrawi et al. (2020) (CLM)
and Dean and Ghemawat (2008) (LATE) on straggling task detection, RMSTD shows an
improvement of 19.51% and 23.30%, respectively.

PAPER CONTRIBUTIONS

The following are the contributions of this paper to the research work:
1. Increased accuracy: RMSTD using ART offers a more precise prediction of

when the activity is anticipated to be finished by considering the task’s typical
behaviour over time. Temporary sluggishness, sporadic resource conflict, or
network congestion that can lead to fluctuations in the RT have less of an impact

Table 3
Experimental data sizes and results

RMSTD CLM LATE
Data size = 10 GB, Time threshold = 10 s

No of Stragglers 2 3 4
Time Taken 12.86 s 17.20 s 20.30 s
ART 7.52 s 12.71 s 14.09 s

Data size = 20GB, Time threshold = 30 s
No of Stragglers 2 4 3
Time Taken 31.20 s 37.30 s 37.10 s
ART 29.30 s 31.70 s 33.71 s

Data size = 30 GB, Time threshold = 50 s
No of Stragglers 2 4 3
Time Taken 55.00 s 69.70 s 71.20 s
ART 49.55 s 62.90 s 64.81 s

Averages
No of Stragglers 2 3.67 3.33
Time Taken 33.02 41.4 42.87
ART 28.79 35.77 37.54

2295Pertanika J. Sci. & Technol. 32 (5): 2281 - 2298 (2024)

A Reliable Multimetric Straggling Task Detection

Figure 5. Experimental result with data size of 10 GB text file

Figure 6. Experimental result with data size of 20 GB text file

0.00 10.00 20.00 30.00 40.00 50.00

RMSTD

CLM

LATE

Time(s)

Time Taken

0
1
2
3
4
5

RMSTD CLM LATE

St
ra

gg
le

rs

Straggling Tasks

Time (s)

0
1
2
3
4
5

RMSTD CLM LATE

St
ra

gg
le

rs
Straggling Tasks

0.00 5.00 10.00 15.00 20.00 25.00

RMSTD

CLM

LATE

Time (s)

Time Taken

0.00 5.00 10.00 15.00 20.00 25.00

myclustertask-m
myclustertask-0
myclustertask-1
myclustertask-2
myclustertask-3
myclustertask-4
myclustertask-5
myclustertask-6

Time (s)

N
od

es

Remaining Time Estimates

LATE
CLM
RMSTD

0.00 10.00 20.00 30.00 40.00

myclustertask-m
myclustertask-0
myclustertask-1
myclustertask-2
myclustertask-3
myclustertask-4
myclustertask-5
myclustertask-6

Time(s)

Ta
sk

s

Remaining Time Estimates

LATE

CLM

RMSTD

Time (s)

2296 Pertanika J. Sci. & Technol. 32 (5): 2281 - 2298 (2024)

Lukuman Saheed Ajibade, Kamalrulnizam Abu Bakar, Muhammed Nura Yusuf and Babangida Isyaku

Figure 7. Experimental result with data size of 30 GB text file

0.00 20.00 40.00 60.00 80.00

RMSTD

CLM

LATE

Time (s)

Time Taken

0
1
2
3
4
5

RMSTD CLM LATE

St
ra

gg
le

rs
Straggling Tasks

Time (s)

on this calculation. RMSTD through ART provides a more reliable and accurate
indicator of work advancement.

2. Better straggler detection: Straggling tasks take significantly longer than the
average or projected completion time. RMSTD makes detecting tasks that deviate
from the norm and demonstrate straggling behaviour easier. This comparison aids
in differentiating between jobs that may be suffering true performance concerns
and those that are advancing at a normal rate.

3. Smoothing out fluctuations: RMSTD provides a more reliable and smoothed
estimate of the task’s remaining time compared to other RT approaches. It
considers the task’s historical behaviour, considering the average time it has
taken to accomplish identical pieces of work. It mitigates the impact of short-
term oscillations or outliers in the Remaining Time, resulting in a more reliable
estimate of job completion. Outliers and skews do not overly influence the
average, and this can make it easier to identify tasks that are consistently taking
longer than expected.

4. Improved decision-making: When deciding on tasks, resources, or task
scheduling, RMSTD offers a more trustworthy base in giving a more informed
perspective on the anticipated completion timeframes of tasks by taking the past

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00

myclustertask-m

myclustertask-0

myclustertask-1

myclustertask-2

myclustertask-3

myclustertask-4

myclustertask-5

myclustertask-6

Time (s)

Ta
sk

s

Remaining Time Estimates

LATE

CLM

RMSTD

2297Pertanika J. Sci. & Technol. 32 (5): 2281 - 2298 (2024)

A Reliable Multimetric Straggling Task Detection

average into account. Through this, it is easier to allocate resources more wisely
and develop better task management plans, ultimately improving the efficiency
of the work.

CONCLUSION

RMSTD provides a more stable, accurate, and reliable measure of task progress. It helps
identify straggling tasks more effectively and facilitates better decision-making in Hadoop
environments. It also offers a better advantage in detecting straggling tasks in Hadoop,
and it has proven to be a useful approach for raising the effectiveness and performance
of massively parallel data processing systems. Identifying stragglers and taking proactive
steps to reduce their impact on job completion timeframes is feasible by continuously
monitoring their progress and calculating the remaining execution time for tasks. In
distributed computing systems, this strategy helps to optimise resource usage, shorten job
execution times, and improve user experience.

ACKNOWLEDGEMENT

The authors acknowledged the contributions of all the authors to the successful completion
of this article. The authors would also like to express their gratitude to Universiti Teknologi
Malaysia for providing an enabling environment to carry out the study.

REFERENCES
Ananthanarayanan, G., Kandula, S., Greenberg, A., Stoica, I., Lu, Y., Saha, B., & Harris, E. (2019). Reining

in the outliers in MapReduce clusters using Mantri. In 9th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 10) (pp. 265-278). USENIX Association.

Chen, Q., Liu, C., & Xiao, Z. (2014). Improving MapReduce performance using smart speculative execution
strategy. IEEE Transactions on Computers, 63(4), 954-967. https://doi.org/10.1109/TC.2013.15

Dai, W., & Bassiouni, M. (2013). An improved task assignment scheme for Hadoop running in the clouds.
Journal of Cloud Computing, 2, Article 23. https://doi.org/10.1186/2192-113X-2-23

Dai, W., Ibrahim, I., & Bassiouni, M. (2016). Improving load balance for data-intensive computing on cloud
platforms. In 2016 IEEE International Conference on Smart Cloud (SmartCloud) (pp. 140-145). IEEE
Publishing. https://doi.org/10.1109/SmartCloud.2016.44

Dai, W., Ibrahim, I., & Bassiouni, M. (2017). An improved straggler identification scheme for data-intensive
computing on cloud platforms. n 2017 IEEE 4th International Conference on Cyber Security and Cloud
Computing (CSCloud) (pp. 211-216). IEEE Publishing. https://doi.org/10.1109/CSCloud.2017.64

Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters. Communications
of the ACM, 51(1), 107-113. https://doi.org/10.1145/1327452.1327492

2298 Pertanika J. Sci. & Technol. 32 (5): 2281 - 2298 (2024)

Lukuman Saheed Ajibade, Kamalrulnizam Abu Bakar, Muhammed Nura Yusuf and Babangida Isyaku

Ghare, G. D., & Leutenegger, S. T. (2005). Improving speedup and response times by replicating parallel
programs on a SNOW. In D. G. Feitelson, L. Rudolph, U Schwiegelshohn (Eds.), Job scheduling strategies
for parallel processing. JSSPP 2004. Lecture Notes in Computer Science (pp. 264-287). Springer. https://
doi.org/10.1007/11407522_15

Javadpour, A., Wang, G., Rezaei, S., & Li, K. C. (2020). RETRACTED ARTICLE: Detecting straggler
MapReduce tasks in big data processing infrastructure by neural network. Journal of Supercomputing,
76, 6969-6993. https://doi.org/10.1007/s11227-019-03136-6

Katrawi, A. H., Abdullah, R., Anbar, M., & Abasi, A. K. (2020). Earlier stage for straggler detection and handling
using combined CPU test and LATE methodology. International Journal of Electrical and Computer
Engineering, 10(5), Article 4910. https://doi.org/10.11591/ijece.v10i5.pp4910-4917

Katrawi, A. H., Abdullah, R., Anbar, M., AlShourbaji, I., & Abasi, A. K. (2021). Straggler handling approaches
in MapReduce framework: A comparative study. International Journal of Electrical and Computer
Engineering, 11(1), 375-382. https://doi.org/10.11591/ijece.v11i1.pp375-382

Ketu, S., Mishra, P. K., & Agarwal, S. (2020). Performance analysis of distributed computing frameworks for
big data analytics: Hadoop vs Spark. Computacion y Sistemas, 24(2), 669-686. https://doi.org/10.13053/
CyS-24-2-3401

Kumar, G., Mohan, S., & Nagesh, A. (2021). An ensemble of feature subset selection with deep belief network
based secure intrusion detection in big data environment. Indian Journal of Computer Science and
Engineering, 12(2), 409-420. https://doi.org/10.21817/indjcse/2021/v12i2/211202101

Ouyang, X., Garraghan, P., McKee, D., Townend, P., & Xu, J. (2016). Straggler detection in parallel computing
systems through dynamic threshold calculation. In 2016 IEEE 30th International Conference on Advanced
Information Networking and Applications (AINA) (pp. 414-421). IEEE Publishing. https://doi.org/10.1109/
AINA.2016.84

Ouyang, X., Wang, C., Yang, R., Yang, G., Townend, P., & Xu, J. (2018). ML-NA: A machine learning based
node performance analyzer utilizing straggler statistics. In 2017 IEEE 23rd International Conference
on Parallel and Distributed Systems (ICPADS) (pp. 73-80). IEEE Publishing. https://doi.org/10.1109/
ICPADS.2017.00021

Phan, T. D., Pallez, G., Ibrahim, S., & Raghavan, P. (2019). A new framework for evaluating straggler detection
mechanisms in MapReduce. ACM Transactions on Modeling and Performance Evaluation of Computing
Systems, 4(3), Article 14. https://doi.org/10.1145/3328740

Qiang, Y., Li, Y., Wei, W., Pei, B., Zhao, J., & Zhang, H. (2014). A job scheduling policy based on the job-
classification and dynamic replica mechanism. Information Technology Journal, 13(3), Article 501. https://
doi.org/10.3923/itj.2014.501.507

Zaharia, M., Konwinski, A., Joseph, A. D., Katz, R., & Stoica, I. (2019). Improving MapReduce performance
in heterogeneous environments. In Proceedings of the 8th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2008 (pp. 29-42). USENIX Association.

